Type B Forces \& Loadings

Lift Cage weight G =	170 kg
Max load =	300 kg
Loading test $=$ Max load $\times 1,2=\mathbf{Q}=$	360 kg
B-lift 3000 Frame weight \mathbf{H} about~	500 kg
Forces on guide frame by Lift Cage PLAN 1	
Moment equation (c.p. R2)	
$\mathbf{R 1}=(\mathbf{G} \times 9,81 \times \mathbf{a})+(\mathbf{Q} \times 9,81 \times \mathbf{b}) / 0,73$	8574 N
Static Force Equation	
Direction $\longrightarrow \mathbf{R 2 - R 1 = 0}$ therefore $\mathbf{R 2}=\mathbf{R 1} \quad$ (Reaction forces)	
Guide frame fastner PLAN 2	

We look at the active force \mathbf{F} which is the some as $\mathbf{R 1}$ and $\mathbf{R 2}$ but opposite direction.
Moment equation frame / lift (c.p. Rt)
$\begin{array}{ll}\text { Clockwice: } & \mathbf{F}(\mathbf{d x}+0,19+0,73)-\mathbf{F}(\mathbf{d x}+0,19)-\mathbf{R b}(\mathbf{L h}-\mathbf{d x})=0 \\ & \text { Thus } \mathbf{R b}=\mathbf{F x} 0,73 /(\mathbf{L h}-\mathbf{d x})\end{array}$
Static Force Equation
Direction $\longrightarrow \mathbf{F - F}-\mathbf{R t}+\mathbf{R b}=0$ therefore $\mathbf{R t}=\mathbf{R b}$

B-lift, lift height (l3000		If $\mathbf{d x}$ min	$\mathrm{Rt}=$	2140 N
B-lift, lift height	3000	dx max	$\mathrm{Rt}=$	2479 N
B-lift, lift height	1000	If $\mathbf{d x}$ min	$\mathrm{Rt}=$	6766 N
B-lift, lift height	1000	dx max	$\mathbf{R t}=$	11921 N
B-lift 1000 has the max force			11921	

Recommend by Swedish Work Environment Authority note no 130 , increase Rt by 40%, $=$
16,690 N
Mounting bolt M10, structural strength 8.8, breaking stren!29200 N

Breakage safety, 2 bolts $=\quad 3.5$ times
The guide frame shall stay against a wall at plan 1.
Not quite nessary if the guide frame on floor has support against wall but to increase guide frame stability we recommend complete with 2 bolts at top of electric motor box.
Max load on floor
$\mathbf{B - l i f t ~} 3000 \quad \mathbf{G}+\mathbf{Q}+\mathbf{H}=\quad 1030 \mathrm{~kg} \quad(\mathbf{G}+\mathbf{Q}+\mathbf{H}) /$ basis $2,50 \times 13,00=\quad 32 \mathrm{~kg} / \mathrm{dm} 2$

Fastner at the top of motor box.

If the guide frame can't be fixed against something at bottom, the fixings at top of motor box will increase the force Rt.
Moment equation frame / lift (c.p. Rt)
Direction $\longrightarrow \mathbf{F}(\mathbf{d x}+0,19+0,73)-\mathbf{F}(\mathbf{d x}+0,19)-\mathbf{R m}(\mathbf{L h}-\mathbf{d x}-0,5)=\mathbf{0}$ Thus Rm = F x 0,73 / (Lh - dx - 0,5)
B-lift 800, shall bidx $=\min \quad \mathbf{R m}=\mathbf{R t}=\quad 27818 \mathrm{~N}$
B-lift $3000 \quad \mathbf{d x}=\max \quad \mathbf{R m}=\mathbf{R t}=\quad 3091 \mathrm{~N}$

For the small B-lift 800, we check the force on bolts at Rt, calculation.
Recommend increase Rt by 40%, = 38945 N
Mounting bolt M10, structural strength 8.8, breaking stren 29200 N
Breakage safety, 2 bolts = 1.5 times
RESULT: \quad Fastner for all B-lifts shall be at least 2 bolts 8.8 M10 at plan 2 and NTD recommend to complete with bolts at motor box for stability.

